C06 - Atmosphere-Ocean Background Modelling for Terrestrial Gravimetry

We will focus on the development of global background models of atmosphere and ocean dynamics that are applicable to gravity records taken anywhere at the Earth’s surface. The background models will be split into

  • deformation effects that also consider the laterally heterogeneous rheology of the Earth’s crust;
  • regional-to-global attraction effects of both atmospheric and oceanic mass variability along the strategy outlined by; and
  • the local effects from the direct vicinity of the sensor that are most sensible to the local topographic roughness and that might benefit most from a possible augmentation with barometric observations taken around the gravity sensor.

We will also consider the requirements on geophysical signal separation of any new technology developed in TerraQ sensitive to time-variable gravity changes (e.g., clock comparisons via optical fibres over large distances; new satellite concepts; VLBAI) and provide prototype correction models for atmospheric effects in those measurements as well. Specific attention will be paid to the long-term consistency of the background models to allow for the low-frequency signal separation over many decades.

© Timmen
Highly accurate continuous observations of gravimetric tides on Helgoland are sensitive to oceanic loading of the sea floor as well as to atmospheric pressure forces. The sketch demonstrates the deforming Earth’s crust caused by loading of temporal air mass (pressure) variations and sea mass changes (tides, storm surge) observable locally with terrestrial instruments as well as regionally with the satellite mission GRACE-FO.

Objectives of C06 - Atmosphere-Ocean Background Modelling for Terrestrial Gravimetry

  1. Time-variable atmosphere-ocean background models for terrestrial gravimetry 
  2. Background models will be consistent with the GRACE de-facto standard AOD1B 
  3. Prototype atmospheric background models for all new technologies of TerraQ

Executing Persons

Principal Investigators

Dr. Henryk Dobslaw
Dr. Henryk Dobslaw
Dr.-Ing. Ludger Timmen
Dr.-Ing. Ludger Timmen

Early Career Researchers

Dr. Kyriakos Balidakis
Dr. Kyriakos Balidakis

Publications

Showing results 1 - 19 out of 19

Antokoletz ED, Wziontek H, Dobslaw H, Balidakis K, Klügel T, Oreiro FA et al. Combining atmospheric and non-tidal ocean loading effects to correct high precision gravity time-series. Geophysical journal international. 2024 Jan;236(1):88-98. Epub 2023 Sept 26. doi: 10.1093/gji/ggad371
Balidakis K, Sulzbach R, Dobslaw H, Dill R. How Do Atmospheric Tidal Loading Displacements Vary Temporally as Well as across Different Weather Models? In Freymueller JT, Sánchez L, editors, Gravity, Positioning and Reference Frames - Proceedings of the IAG Symposia - GGHS2022: Gravity, Geoid, and Height Systems 2022; IAG Commission 4: Positioning and Applications, 2022; REFAG2022: Reference Frames for Applications in Geosciences, 2022. Berlin, Heidelberg: Springer Berlin Heidelberg. 2024. p. 129-137. (International Association of Geodesy Symposia). Epub 2023 Jun 30. doi: 10.1007/1345_2023_201
Shihora L, Liu Z, Balidakis K, Wilms J, Dahle C, Flechtner F et al. Accounting for residual errors in atmosphere–ocean background models applied in satellite gravimetry. Journal of geodesy. 2024 Apr;98(4):27. Epub 2024 Apr 10. doi: 10.1007/s00190-024-01832-7
Voigt C, Sulzbach R, Dobslaw H, Weise A, Timmen L, Deng Z et al. Non-tidal ocean loading signals of the North and Baltic Sea from terrestrial gravimetry, GNSS, and high-resolution modeling. 2024. Epub 2024 Mar 25. doi: 10.22541/essoar.171136797.71160253/v1
Küreç Nehbit P, Glaser S, Sakic P, Balidakis K, Heinkelmann R, Schuh H et al. On the improvement of the sensitivity levels of VLBI solutions from a combination with GNSS. Advances in space research. 2023 Oct 15;72(8):3037-3047. Epub 2023 Jun 20. doi: 10.1016/j.asr.2023.06.021
Shihora L, Balidakis K, Dill R, Dobslaw H. Assessing the stability of AOD1B atmosphere–ocean non-tidal background modelling for climate applications of satellite gravity data: long-term trends and 3-hourly tendencies. Geophysical journal international. 2023 Aug;234(2):1063-1072. Epub 2023 Mar 21. doi: 10.1093/gji/ggad119
Voigt C, Sulzbach R, Timmen L, Dobslaw H, Weise A, Deng Z et al. A superconducting gravimeter on the island of Heligoland for the high-accuracy determination of regional ocean tide loading signals of the North Sea. Geophysical journal international. 2023 Apr 3;234(3):1585-1602. doi: 10.1093/gji/ggad147
Ampatzidis D, Wang L, Mouratidis A, Balidakis K. Rigorous and fast constraints transformations at the solution level: case studies for regional and global GNSS networks. GPS solutions. 2022 Apr 1;26(2):44. doi: 10.1007/s10291-022-01225-3
Antonoglou N, Balidakis K, Wickert J, Dick G, de la Torre A, Bookhagen B. Water-Vapour Monitoring from Ground-Based GNSS Observations in Northwestern Argentina. Remote sensing. 2022 Nov 1;14(21):5427. Epub 2022 Oct 28. doi: 10.3390/rs14215427
Balidakis K, Sulzbach R, Shihora L, Dahle C, Dill R, Dobslaw H. Atmospheric Contributions to Global Ocean Tides for Satellite Gravimetry. Journal of Advances in Modeling Earth Systems. 2022 Nov 10;14(11):e2022MS003193. Epub 2022 Oct 17. doi: 10.1029/2022MS003193
Kitpracha C, Nilsson T, Heinkelmann R, Balidakis K, Modiri S, Schuh H. The impact of estimating common tropospheric parameters for co-located VLBI radio telescopes on geodetic parameters during CONT17. Advances in space research. 2022 May 1;69(9):3227-3235. Epub 2022 Feb 25. doi: 10.1016/j.asr.2022.02.013
Raut S, Heinkelmann R, Modiri S, Belda S, Balidakis K, Schuh H. Inter-Comparison of UT1-UTC from 24-Hour, Intensives, and VGOS Sessions during CONT17. Sensors. 2022 Apr 2;22(7):2740. doi: 10.3390/s22072740
Raut S, Modiri S, Heinkelmann R, Balidakis K, Belda S, Kitpracha C et al. Investigating the Relationship Between Length of Day and El-Niño Using Wavelet Coherence Method. In Freymueller JT, Sánchez L, editors, Geodesy for a Sustainable Earth - Proceedings of the 2021 Scientific Assembly of the International Association of Geodesy. 2022. p. 253-258. Chapter 167. (International Association of Geodesy Symposia). doi: 10.1007/1345_2022_167
Shihora L, Balidakis K, Dill R, Dahle C, Ghobadi‐far K, Bonin J et al. Non‐Tidal Background Modeling for Satellite Gravimetry Based on Operational ECWMF and ERA5 Reanalysis Data: AOD1B RL07. Journal of Geophysical Research: Solid Earth. 2022 Aug 13;127(8):e2022JB024360. doi: 10.1029/2022JB024360
Sulzbach R, Wziontek H, Hart-davis M, Dobslaw H, Scherneck H, Van Camp M et al. Modeling gravimetric signatures of third-degree ocean tides and their detection in superconducting gravimeter records. Journal of geodesy. 2022 Apr 30;96(5):35. doi: 10.1007/s00190-022-01609-w
Wang J, Ge M, Glaser S, Balidakis K, Heinkelmann R, Schuh H. Impact of Tropospheric Ties on UT1-UTC in GNSS and VLBI Integrated Solution of Intensive Sessions. Journal of Geophysical Research: Solid Earth. 2022 Nov 11;127(11):e2022JB025228. Epub 2022 Nov 4. doi: 10.1029/2022JB025228
Wang J, Balidakis K, Zus F, Chang X, Ge M, Heinkelmann R et al. Improving the Vertical Modeling of Tropospheric Delay. Geophysical research letters. 2022 Mar 16;49(5):e2021GL096732. doi: 10.1029/2021GL096732
Wang J, Ge M, Glaser S, Balidakis K, Heinkelmann R, Schuh H. Improving VLBI analysis by tropospheric ties in GNSS and VLBI integrated processing. Journal of geodesy. 2022 Apr 26;96(4):32. doi: 10.1007/s00190-022-01615-y
Schuh H, Heinkelmann R, Beyerle G, Anderson JM, Balidakis K, Belda S et al. The Potsdam Open Source Radio Interferometry Tool (PORT). Publications of the Astronomical Society of the Pacific. 2021 Oct 19;133(1028):104503. doi: 10.1088/1538-3873/ac299c